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SUMMARY

This paper presents a mathematical model for time-dependent heat transfer processes in a premature
infant as well as a �nite volume scheme for the numerical solution of the underlying equations. The
modelling of important physiological processes leads to a bio-heat equation. The main property of this
formulation is the time-dependent heat distribution by blood �ow. The employed �nite volume scheme
relies on the use of unstructured grids. Numerical simulations are presented which show the development
of physical states due to a change in boundary values. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Severe asphyxia is an important cause for injuries of the developing brain [1]. Experimental
studies have shown that the neuronal loss happens over a period of several days after such an
incident [2]. One of the factors that in�uence the degree and distribution of neuronal loss is
the cerebral temperature. Clinical studies have shown that lowering the cerebral temperature
can prevent much damage [3]. The question arises, if the cerebral temperature of a premature
infant can be lowered by manipulating the environmental conditions inside an incubator while
the rest of the body maintains a pleasant temperature.
It is useful to discuss some medical aspects concerning premature infants. This is done in

Section 2. Since it is an important question how fast a useful thermal state within the body
can be achieved without dealing only with steady states, it makes sense to investigate the
temporal evolution of the whole process. Section 3 deals with the governing equations of
our instationary model. Since the thermal maturity of an infant can be related to its size, the
model has to be applicable to di�erent size neonates in order to be of practical importance.
This is done by employing unstructured grids within a �nite volume framework. In Section 4,
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we brie�y outline the used technique. Finally, we present the results of simulations using
available real life data in Section 5.

2. ASPECTS OF THE MODEL

In order to show that our aim is not to work on an academic problem, we have to make some
comments on our approach. Due to ethical and also technical reasons it is not possible to ob-
serve the temperature distribution within the brain of premature infants in the required detail.
This is also true in the case of adults. Concerning adults a large amount of statistical data is
available, but by the known di�erences in physiology and anatomy between adults and prema-
ture infants it is impossible to derive valid statements based on that information for the case
we are interested in. Additionally, the mutual e�ects between di�erent physiological processes
which are responsible for heat transfer within the body are medically not well understood
up to now. Because of this, there is no medical background on which an accurate statement
can be made for the described situation. Therefore, a mathematical model is needed covering
di�erent known aspects in order to get an insight into the corresponding real world process.
Mathematical models for human thermoregulation already exist in the literature for the

case of adults, see e.g. References [4–7]. However, these models are not applicable in the
situation this paper is concerned with because of the di�erences in the physiological and
anatomical attributes of adults and premature infants. For a description of these di�erences
which have a strong e�ect on the whole modelling process see, e.g. References [4, 8]. In the
described situation, a model is helpful if we demand from it that it includes models for the
thermoregulators of the body, that it includes a model for the thermal maturity and that it gives
detailed results for temperature pro�les within the head. Up to now, multi-dimensional models
of premature infants which include thermoregulative aspects do not exist with the exception of
the model investigated by Fischer et al. [9], but that model relies on a steady-state assumption.
The term thermoregulation stands for the active measurements of the body to hold a neutral

temperature. One of the main regulators are the vital organs including especially the brain,
which can be a reason why a selective cooling of the brain may not be successful. Another
signi�cant heat source are the muscles directly in connection with the skeleton. The most
important possibility for the body to loose heat is through the skin. Additionally, the blood
�ow has to be taken into account.
In the case of adults, the thermoregulative functions are fully developed and the idea of

selectively cooling the brain does not make sense. Concerning premature infants, the situation
is totally di�erent. First, the possibility to loose heat through the skin is dramatically increased
since the surface to volume ratio is three times as high as the ratio of an adult. Second, the
isolating fat layer directly under the skin is very thin and the heat conductivity of the premature
body is higher than the heat conductivity of the body of the adult. As a result, the temperature
within premature infants can easily be in�uenced by the environment. Another aspect is that
the rate of thermoregulative reactions of the body cannot increase as much in the case of
a premature infant as in the case of a more mature infant or an adult if the temperature is
lowered from outside. This fact is referred to as the thermal maturity of the infant.
We implement these aspects as follows. The dynamic changes in the heat distribution are

modelled by a so-called bio-heat equation. Concerning the boundary conditions we assume that
it is possible to exert su�cient control on the environmental parameters inside an incubator
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Plate 1. Evolution of the temperature distribution for the described case.
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so that the de�nition of a boundary temperature at the skin of the infant makes sense, i.e.
we employ Dirichlet conditions with respect to temperature which is a plausible assertion
as well as a modelling step. Since the thermal maturity can be linked to the size of the
infant it is implemented via the geometry. This is especially important since the geometry
strongly in�uences the validity of computed temperature pro�les [10]. Corresponding values
for the involved parameters of metabolical heat production can be de�ned by results of clinical
studies, see e.g. References [4, 11, 12].
All the works concerning thermoregulation of adults deal with empirical situations in the

sense that the described models focus on the e�ects of roughly resumed environmental in-
�uences on an average grown up human, i.e. they deal with the e�ects of particularly hot,
cold or otherwise special environmental conditions. The underlying application typically deals
with empirical situations, e.g. the e�ects of extremely hot working conditions are addressed
in order to prevent long-term health problems of industrial workers. See Reference [13] for
a description of typical applications. In contrast, our scheme has to be applicable to infants
of di�erent sizes with accordingly di�erent physiological behaviour because of the di�erent
maturity of premature infants of di�erent age, and so unstructured grids have to be used.
Additionally, we consider di�erent tissues (bone, fat, skin and kernel) which feature di�erent
coe�cients for heat conductivity and metabolical rates. For a detailed description we refer to
Reference [9]. Another distinctive feature of our model is that heat transfer can take place by
a model for blood�ow, see also Reference [14] for a discussion of that topic.
Our model is an extension of the model used by Fischer et al. which relies on a steady state

assumption [9]. We extend the model to the unsteady case which results in the possibility
to investigate numerical solutions which are not in a steady state but which have a physical
meaning. As a result of this, time dependent boundary conditions can be employed in order
to investigate changes in the temperature distribution due to dynamic changes in the environ-
ment. As an important aspect, it is perhaps possible based on the knowledge of predictable
intermediate states to de�ne a control mechanism or a sequence of boundary conditions which
ensure that a desired state of the temperature distribution within a considered infant can be
achieved after less time than in the case of constant boundary temperatures.

3. GOVERNING EQUATIONS

The heat transfer within a body of the premature infant is modelled by the so-called bio-heat
equation

c(x)�(x)
@
@t
T (x; t)=div[�(x)∇xT (x; t)] + f(x; t) (1)

with the spatial variable x = (x1; x2)T and the temporal variable t. Thereby, we also have the
temperature T , the heat conductivity of the tissue �, the speci�c heat capacity of the tissue c
and the density of the tissue �. With f we denote sources due to metabolic heat production
and blood �ow. This source term takes the form f(x; t) = QM(x) + QB(x; t). Thereby, we
have the metabolic heat production QM and heat transfer due to blood�ow QB. While QM is
a local heat source depending on the underlying tissue and the location in the body which can
be de�ned directly by the use of available medical data [4, 12], the source term QB involves
a further modelling step which is presented at the end of this section.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:253–261



256 M. BREU�, B. FISCHER AND A. MEISTER

In Reference [9], Equation (1) was solved numerically under a steady-state assumption.
Therefore, Fischer et al. [9] used a simpli�cation of (1), namely

@
@t
T (x; t)=div[�(x)∇xT (x; t)] + f(x; t); (2)

where the density and the speci�c heat capacity of the tissue are omitted. In the cause of
that simpli�ed ansatz, a stationary model for the blood�ow was applied. As a result of this,
one can conclude that the intermediate numerical results computed with the help of that
stationary model are a sequence of ‘quasi-equilibrium’ states converging to an equilibrium
situation.
We illustrate the di�erence between the model used by Fischer et al. and our extension

as follows. In order to apply a �nite volume strategy, it is useful to write the governing
equation in divergence form. The governing equation describing the temporal evolution of the
temperature in a physically sensible manner reads

@
@t
T (x; t)=

1
c(x)�(x)

div[�(x)∇xT (x; t)] + 1
c(x)�(x)

f(x; t): (3)

The di�erence to Equation (2) used for the steady-state calculations is given by the factor
1=(c(x)�(x)). We especially notice that the �rst term on the right-hand side of (3) is not
in divergence form with respect to the variable T anymore and so the intermediate states
feature unphysical heat sources at the bordering elements of the spatial discretization between
di�erent tissues due to the spatial dependence of c and �. Since e.g. the speci�c heat capacity
of the kernel is 3770 J=kg K and the speci�c heat capacity of bone is 2170 J=kg K while the
speci�c densities of kernel and bone are nearly the same for our purpose, this di�erence is
quite signi�cant.
We now investigate the original equation (1) without a simpli�cation. Let � be an arbitrary

control volume within our domain of interest D. Integration over � gives
∫
�
c(x)�(x)

@T (x; t)
@t

dx=
∫
@�
�(x)∇xT (x; t) ds+

∫
�
f(x; t) dx: (4)

Assuming that the control volume � does not change with time, the left-hand side of (4)
gives

∫
�
c(x)�(x)

@T (x; t)
@t

dx=
d
dt

[ ∫
�
c(x)�(x)T (x; t) dx

]
;

which means that for each cell we get an expression for the temporal evolution of the quantity
�T (x; t) := c(x)�(x)T (x; t). We now choose to write Equation (1) in terms of the variable �T
and to investigate the evolution of this quantity since we already have divergence form in the
�rst term on the right-hand side of (1). For abbreviation, we write k(x) := c(x)�(x) and we
omit the notation of the variables x=(x1; x2)T and t. It is simple to write Equation (1) in the
form

@t �T = @x1 [�@x1T ] + @x2 [�@x2T ] + f: (5)
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Now we have to eliminate T in favour of �T . Equation (5) gives

@t �T =
@x1�
k
k@x1T +

�
k
k@2x1T +

@x2�
k
k@x2T +

�
k
k@2x2T + f: (6)

Because k depends on x, getting k across @i is a bit work. After a lengthy but simple
computation, the divergence form in the new variable �T reads

@t �T =∇ ·
[
�
k
∇ �T − � �T

k2
∇k

]
+f: (7)

By Equation (7), it is evident that the formal change in the variable has the e�ect of an
additional source term depending on ∇k.
We now constitute the blood�ow model. It is based on the assumption that there is a central

bloodpool from which arterial blood is distributed with the temperature TB(t) into the body.
There the temperature of the blood is locally in�uenced by the temperature of the tissue and
vice versa. After that, the blood �ows back through the veins into the bloodpool. This blood
has the temperature TV(t). By this assumption, we get the equation

mBcB
d
dt
TB(t)=

∫
D
�BcBKB(x)B(x) dx[TV(t)− TB(t)] (8)

for the temporal evolution of the bloodpool temperature TB. Thereby, we denote by mB the
mass of the blood, by �B the speci�c density of the blood, by cB the speci�c heat capacity
of the blood and by KBB the e�ective blood�ow which also in�uences TV by

TV(t)=

∫
D KB(x)B(x)T (x; t) dx∫

D KB(x)B(x) dx
: (9)

This proceeding constitutes the source term QB as

QB(x; t)=�BcBKB(x)B(x)[TB(t)− T (x; t)]: (10)

We shortly investigate some properties of the blood�ow model in order to clarify the subject.
Therefore, let the abbreviations

�=�BcB; �=
∫
D
KB(x)B(x) dx and �=�B=mB

hold. Then it follows directly from (8) that we can write

d
dt
TB(t)= ��[TV(t)− TB(t)]; (11)

and so

TB(t)=TV(t)− 1
��

d
dt
TB(t) (12)
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holds. We now investigate the net e�ect of the blood�ow due to the described model. Straight-
forward integration of the source over the computational domain results in∫

D
QB(x; t) dx = �

[
�TB(t)−

∫
D
KB(x)B(x)T (x; t) dx

]

(12)
= ��TV(t)− �

�
d
dt
TB(t)− ��TV(t)

= −�
�
d
dt
TB(t): (13)

Although result (13) may look surprising at �rst glance since one might expect that the
blood�ow should have zero net e�ect regardless of the temporal dependence of the temperature
of the bloodpool, it neatly illustrates crucial properties of the time-dependent blood�ow model.
In order to demonstrate these properties, we investigate a model situation. Therefore, note

that �, � and � are positive constants. Consider a steady-state situation, i.e. TB =TV holds. If
the body is heated by a heat source at a boundary, the temperature within the body increases
and we see by Equation (9) that TV will increase. By (11) this has the e�ect that the bloodpool
temperature TB will increase in the very next future. When employing this in (13) we get
the result that the total of all sources in the body is negative. The described situation has the
following meaning: While the blood in the bloodpool cools the increasingly warm body in
the mean if the body is exposed to heat, it also takes over heat from it. In the corresponding
situation when the body is exposed to cold, the increasingly cold body is warmed in the mean
by the blood in the bloodpool which also takes over some of the coldness of the body. The
bloodpool and the body are to be seen as two separate systems which are connected via heat
�uxes determined by the mentioned equations. Thereby, one can consider the bloodpool as
having the function of a regulator.
In the steady-state situation, the temporal derivative of TB is zero and we see by (13)

that the two systems are in an equilibrium since the net e�ect of the blood�ow is also
zero which is a desired result and represents the starting point of the whole argumentation.
Furthermore, the model described in Reference [9] is included in the described model. For
unsteady computations, the additional equation (8) has to be discretized and integrated within
our algorithm.

4. ABOUT THE FINITE VOLUME APPROXIMATION

Within this work we only want to sketch the general idea. We consider the integral form of
Equation (7), namely

d
dt

∫
�

�T (x; t) dx=
∫
@�

[
�(x)
k(x)

∇ �T (x; t)− �(x) �T (x; t)
k(x)2

∇k(x)
]
ds+

∫
�
f(x; t) dx (14)

for all control volumes �⊂D. In order to solve (14) numerically by means of a �nite volume
method, the spatial domain �D has to be decomposed into a �nite number of sub-domains. We
start from a conforming triangulation of �D which is the primary grid, see Figure 1.
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Figure 1. Primary grid.

skin

fat

bone

kernel

Figure 2. Primary grid in the head region.

For a comprehensive de�nition of the notion of the primary grid we refer to Reference [14].
In order to achieve an appropriate resolution of the areas which feature skin, fat and bone,
we de�ne structured subgrids within these types of tissue, see Figure 2.
The occurring second-order derivatives within Equation (7) require the evaluation of �rst-

order derivatives on the boundary of each control volume. Therefore, we use a secondary
mesh where the computation of these derivatives is straightforward. We de�ne a discrete
control volume �i as the open subset of D which includes the node xi and which is bounded
by the straight lines de�ned by the connection of the midpoints of the sides of the triangles
adjacent to the xi with the barycentres of the corresponding triangles adjacent to these points,
see Figure 3. The barycentre of the triangle in the middle is denoted by xs. Concerning the
boundaries, we use basically the same discretization as Fischer et al. [9] which does not
oppose the use of time-dependent Dirichlet conditions. Thereby sets of boundary temperatures
for back, belly, head, neck and legs are de�ned while the parameters c and � are assumed to
take the same value on both sides of the physical boundary.
A �nite volume scheme applied to our governing equation is a measure to discretize the

evolutionary equation (14) for cell averages of the quantity �T which are de�ned with the help
of the cell average operator

(Mh �T )|�= 1
|�|

∫
�

�T (x; t) dx

where |�| denotes the volume of the control volume �. Since there is not enough space to
describe the whole procedure, we only note that the main di�erence to the scheme used by
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Figure 3. The secondary mesh.

Fischer et al. is the additional discretization of Equation (8). This is done in an explicit way
by the approximation

d
dt
TB(t)|t n ≈ TB(t

n+1)− TB(t n)
�t

by evaluating all other terms at the current time level and with TB(t0)=TV(t0) as initial
condition. The discussed analytical attributes of the blood�ow model naturally take over to
the discrete model. We omit the proof because it only requires summation over mean values
of cells instead of integration over the domain and is a straightforward discrete representation
of the proceeding in the analytical case.
Comparisons of the scheme used in Reference [9] with analytical steady-state solutions have

successfully been done recently [16] in order to prove the practical validity of the numerical
method, while theoretical investigations have already shown that the scheme satis�es a discrete
minimum–maximum-principle [9].

5. NUMERICAL SIMULATIONS

We now present some typical results for the described model. We use the mesh illustrated
in Figure 1 which displays the mesh for an infant of weight 1000 g. The triangulation is
composed of about 37 000 triangles and 19 000 control volumes. It features structured sub-
grids as described in Figure 2.
Comparisons of steady-state results computed with our scheme with results used in Ref-

erence [9] have shown that we get the same steady-state solutions. One of such solutions
is displayed by the top picture of Plate 1. This picture shows the temperature distribution
resulting from 299:15 K at the boundaries of the head section while the temperature at the
rest of the boundary is given by comfortable 309:15 K. Plate 1 shows the evolution of the
physical states from the described state at the top to the state corresponding to the picture
at the bottom when employing 299:15 K at head, neck and back while holding 309:15 K at
the rest of the boundary. This choice represents the situation that a cooling in�uence at the
boundary is comparable to the in�uence of the source terms. It also represents a cooling in�u-
ence which is in the medical sense only applicable for a short time since otherwise the health
of the infant would be in danger. These physical states are taken 3, 21 and 60 min after these
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boundary conditions are employed. The results show that the brain cannot be cooled down to
a great extent while a comfortable temperature for the rest of the body can be provided.

6. CONCLUSION

A �nite volume method for the time-accurate simulation of the thermoregulation of prema-
ture infants has been presented. Sophisticated models for blood �ow, thermal maturity and
metabolic heat production together with di�erent body tissues are coupled in an instationary
formulation. For the �rst time, unsteady simulations on that base are done for a premature
infant. The presented model provides an excellent base for further applications in the �eld of
thermoregulation and for extensions to the important three-dimensional case.
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